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Mathematical models of energy homeostasis

Ratchada Pattaranit and Hugo Antonius van den Berg*

Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK

Diabetes and obesity present a mounting global challenge. Clinicians are increasingly turning
to mechanism-based mathematical models for a quantitative definition of physiological
defects such as insulin resistance, glucose intolerance and elevated obesity set points, and for
predictions of the likely outcomes of therapeutic interventions. However, a very large range
of such models is available, making a judicious choice difficult. To better inform this choice,
here we present the most important models published to date in a uniform format, discussing
similarities and differences in terms of the decisions faced by modellers. We review models for
glucostasis, based on the glucose–insulin feedback control loop, and consider extensions to
long-term energy balance, dislipidaemia and obesity.

Keywords: energy homeostasis; diabetes; obesity; insulin resistance; glucose tolerance;
mathematical modelling
1. INTRODUCTION

Energy homeostasis requires the coordination of
several metabolic fluxes. In broad outline, these fluxes
comprise (i) the use of nutrients as metabolic fuels,
(ii) the disposition into the storage of any nutrient
supply surplus to immediate demands and (iii) the
mobilization of nutrients from these stores when
required (e.g. Frayn 2003). Among the hormonal
factors regulating these fluxes, insulin occupies a
central position due to its wide-ranging effects on
blood glucose levels, cell growth and appetite, as well as
internal energy stores (Brook & Marshall 2001). The
latter effect is predominantly anabolic: insulin stimu-
lates glycogenesis, the accumulation of triglycerides in
adipose tissue and amino acid uptake into muscle, while
it inhibits gluconeogenesis, lipolysis and (in muscle)
proteolysis (Brook & Marshall 2001). One could
regard the insulin control loop as the fundamental
‘first-order’ endocrine control, with other factors
(thyroxine, cortisol, glucagon, GH, ILG-1, adipokines,
catecholamines) providing a ‘second-order’ adjustment
to the precise physiological circumstances (Schwartz
et al. 1987; Raju & Cryer 2005).

The coordination of metabolic fluxes at the systemic
level requires an interplay between various organs and
tissues, which each make different contributions to the
overall energy balance. The breakdown of this coordi-
nation leads to abnormalities in energy stores and the
blood levels of glucose, lipids, ketone bodies and
electrolytes (e.g. Salway 2004). This web of mutually
exacerbating abnormalities may stress the insulin
control loop until its ability to compensate for the
orrespondence (hugo@maths.warwick.ac.uk).
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deviations is finally overcome. Consequently, hyper-
glycaemia is a common endpoint, whether or not the
initial defect occurred in insulin production, secretion or
sensitivity. The resulting syndrome of diabetes mellitus
is associated with a variety of long-term complications,
many of which are thought to arise from hyperglycaemia
via protein glycation and oxidative stress (Brownlee
2001; Fajans et al. 2001).

The clinical management of hyperglycaemia (and
attendant abnormalities in blood lipids and lipid stores)
requires a thorough understanding of the interactions
between the liver, pancreas, fat stores and blood
nutrient levels. An explicit representation of this
complex dynamical system can aid the interpretation
of diagnostic tests and help formulate therapeutic
interventions. To this end, a large range of various
mathematical models have been proposed in the
literature. The purpose of this paper is to bring together
these mathematical models and present them, for the
ease of comparison, in a uniform format. Thus, we
present the various models in a standardized notation
(summarized in table 1) and a uniform graphical format
(viz. dynamical charts). We emphasize connections
between the models in terms of different choices the
modeller has to make, and discuss these choices with
reference to the underlying physiology.

We stress the central ideas behind the models and
the key insights that can be gained from them, as well as
the relationships between models and their physiolo-
gical grounding. The present paper thus complements
previous reviews that explicitly list systems of
equations for the models available in the literature
(for such reviews see van Riel (2004); Boutayeb &
Chetouani (2006); Makroglou et al. (2006)). We hope
that the survey will prove useful to modellers as well as
J. R. Soc. Interface (2008) 5, 1119–1135
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Table 1. Summary of notation.

state variables
G [p] glucose concentration in blood plasma
I [p] insulin concentration in blood plasma
A[p] glucagon concentration in blood plasma

I
½is�
[ interstitial fluid concentration of insulin in the [th
tissue compartment

F [p] non-esterified fatty acids concentration in blood
plasma

Mb b-cell mass
QTAG total TAG content of adipocytes

L[p] leptin concentration in blood plasma

fluxes
FI insulin secretion by the pancreatic b-cells
fI insulin secretion per pancreatic b-cell
FG glucose assimilation
JG glucose clearance

F
½exo�
G exogenous glucose input

F
½endo�
G endogenous glucose input

FA glucagon secretion
F0 baseline glucose release rate from the liver
Fass assimilatory influx of energy
Fexp expenditure influx of energy

rate constants
lI insulin clearance rate constant
lA glucagon clearance rate constant
kI;[ passive transport parameter of interstitial insulin

koutI;[ transport coefficient for transport out of the interstitial

insulin compartment

kinI;[ transport coefficient for transport into the interstitial

insulin compartment
a inhibitory effect coefficient of insulin on gluconeogenesis
b insulin-independent glucose usage
g insulin-dependent glucose usage
mb b-cell proliferation function
ab b-cell death rate

miscellaneous
t time
tI;d response–time delay by the pancreatic b-cells as they

respond to changes in the plasma glucose levels
tG;d response–time delay for hepatic glucose production

nAdip number of adipocytes in the body

V ½p� plasma volume
h hypothalamic modulation of food intake
x internal state of the hypothalamus
u environmental factors
v physiological or endocrinological variables that affect

energy expenditure
fQ forcing function describing long-term evolution of

adiposity function

muscle
protein

muscle
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TAG
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amino
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Figure 1. Dynamics chart of energy homeostasis. State
variables are shown as rectangular boxes: those in the
enclosure marked ‘plasma’ represent blood plasma concen-
trations. Boxes on the left-hand side represent internal
stores. Fluxes are represented as double arrows. Endocrine
interactions are shown as dotted arrows: positive as normal
arrowheads, negative as flattened diamonds, modulatory as
circles. Sources or sinks are represented as clouds. The top
cloud represents an influx from the diet or clinical adminis-
tration of substances. The cloud marked ‘a’ represents
pancreatic a-cells and that marked ‘b’ represents pancreatic
b-cells; clouds marked ‘Ø’ correspond to degradation and those
with a lightning flash correspond to the usage as metabolic
fuel. TAGs, triacylglycerides; NEFAs, non-esterified fatty
acids; ins.-dep.tissue, insulin-dependent tissue. Further details
are explained in the discussion of individual models.
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to endocrinologists and clinicians who wish to apply
mathematical models in their research and require a
general orientation.
2. OVERVIEW OF ENERGY HOMEOSTASIS
MODELS

The main physiological and endocrine interactions
underlying energy homeostasis in humans are depicted
schematically in figure 1. This chart shows how the
various models proposed in the literature fit together
J. R. Soc. Interface (2008)
(generally in dynamics charts, state variables are
shown as boxes, rates or fluxes as double arrows
going into or out of these state variable boxes and
flows of information (i.e. regulatory dependencies) as
dotted arrows, while sources or sinks are shown as
clouds). Plasma glucose and plasma insulin are at the
heart of all these models, and therefore the survey
will start with ‘glucocentric’ models that focus on
these two factors. More elaborate models include the
non-esterified fatty acid (NEFA) pool, as well as
internal stores (glycogen for carbohydrate, adipose
tissue for lipids, protein for amino acids); moreover,
dynamically more refined models differentiate between
interstitial pools and the general blood compartment
as well as time delays for certain physiological
response components. These elements will be dis-
cussed in more detail below.

Mathematically, the models typically assume the
form of a system of (generally nonlinear) ordinary
differential equations (ODEs); thus, each state variable
(box) in figure 1 corresponds to a first-order ODE.
Section 3.2 below discusses extensions to delay-
differential equations (DDEs) and integro-differential
equations (IDEs).

http://rsif.royalsocietypublishing.org/
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3. MODELS OF GLYCAEMIC REGULATION

Insulin and glucose are at the heart of the dynamics
chart (figure 1) and form the fundamental glycaemic
homeostatic feedback loop. Only two state variables are
needed for a model limited to this fundamental loop,
and more advanced models can be viewed as variations
of this simple two-state model.
Figure 2. Two-component glycaemic feedback model. The
syringe represents the administration of insulin. The large
cloud represents the combined glucose sources and sinks.
3.1. Basic glucostasis

At the heart of glucostasis lies the basic glycaemic
feedback loop represented in figure 2. The simplest
mathematical model of this loop deals only with the
plasma levels of insulin and glucose (Bolie 1961). The
following ODEs are basic balance equations:

d

dt
I ½p� ZFIðG½p�ÞK lII

½p�; ð3:1Þ

d

dt
G½p� ZFGðI ½p�;G½p�; tÞKJGðI ½p�;G½p�Þ; ð3:2Þ

where I [p] is the plasma level of insulin and G[p] denotes
the plasma level of glucose. Insulin is secreted by the
pancreatic b-cells at a rate FI, treated as a function of
G[p] alone. Insulin is cleared from the plasma with a
physiological half-life equal to lnf2g=lI, where lI is the
insulin clearance rate constant. More generally, it is
reasonable to suppose that FI also depends on I [p];
Kulkarni et al. (1999) showed that in b-cell insulin
receptor knockout mice, first-phase insulin secretion in
response to glucose is ablated. It is known that b-cells
express an insulin receptor, although the regulation of
b-cell proliferation may be the primary function
(Okada et al. 2007). A case could also be made for an
explicit dependence on t of the term FI, to account for
the parasympathetic influence on b-cells.

The gastrointestinal tract is the main exogenous
source of glucose. Endogenous sources are glycogen
mobilization and hepatic gluconeogenesis from
muscle protein or muscle glycogen via pyruvate or
lactate (Frayn 2003). The basic model lumps all these
processes together into a single term FG, whose explicit
dependence on time t accommodates the dependence on
the exogenous input regime. Glucose transport into the
tissues is represented by JG. This is also a lumped
term, combining (i) insulin-independent transport that
depends only on G [p], (ii) insulin-dependent transport
that depends on I [p] as well as G [p] (Frayn 2003) and
(iii) renal excretion of glucose; this flux is important in
hyperglycaemia (Watkins 2003).

The mode of action of this negative feedback
mechanism is intuitively clear (cf. figure 2): increased
G[p] promotes insulin secretion, and insulin in turn
promotes the clearance of glucose from the plasma,
stimulating both the formation of glycogen storage
and the usage of glucose as a metabolic fuel in the
insulin-dependent tissues (Brook & Marshall 2001). In
the simple two-state model, these are sources and sinks
outside the scope of the model, whereas more compre-
hensive models treat the internal stores as explicit
state variables. The dynamics of the basic model is
illustrated in figure 3.
J. R. Soc. Interface (2008)
3.1.1. Analysis of the basic model: quantification of
insulin sensitivity. Clinical management of diabetes is
aimed at a restoration of G [p] to normal values, or at
least prevent excursions beyond the range of concen-
trations found in healthy subjects (Watkins 2003). This
is reasonable in view of the fact that diabetic
complications (such as vascular disease, neuropathy,
retinopathy, nephropathy) are thought to result from
hyperglycaemia via a small number of common
pathways (Watkins 2003).

Suppose that the exogenous glucose input is held
constant, so that the glucose gain term loses its explicit

time dependence: FGðI ½p�;G½p�; tÞh �FGðI ½p�;G½p�Þ. The
plasma glucose equilibrium value �G

½p�
is defined

implicitly by

�FG
�G
½p�
=lI;FIð �G

½p�Þ
� �

ZJGð �G
½p�
=l I;FIð �G

½p�ÞÞ ð3:3Þ

(from equations (3.1) and (3.2)). This equation may

have zero, one or more solutions �G
½p�

and the precise
functional form of the flux terms determines whether any
of these is an attractor of the system’s dynamics. On the
basis of the physio-endocrinological interpretation of the
flux terms, it is reasonable to assume that �FI is monotone
increasing in G ½p�, while FG is monotone decreasing
in both its arguments and JG is monotone increasing in
both its arguments. Under these assumptions, it can be

shown that if equation (3.3) has a solution �G
½p�
, it is

unique and locally a stable attractor. The extent of the
hyperglycaemic excursion (e.g. the ‘area under curve’

or AUC, which is the time integral of GðtÞ½p�KGðtÞ½p�N

following a glucose challenge, where GðtÞ½p�N denotes the
normoglycaemic value) depends on the slowest mode of
the system (the fast mode is essentially lI): a faster slow
mode implies a smaller excursion. The slow mode
corresponds to the insulin sensitivity of the system,
given by the following formula (to be evaluated at the
equilibrium point):

vFI

vG½p�
vJG

vI ½p�
K

vFG

vI ½p�

� �
:

A diminished ability of the pancreatic cells to respond to
a glucose challenge may be due to a reduced b-cell mass,
or reduced responsiveness of individual b-cells or both
(Watkins 2003). This diminished pancreatic responsive-
ness corresponds to a reduction of the term vFI=vG

½p�.
A major factor in the aetiology of diabetes is insulin
resistance (Watkins 2003), a reduced effectiveness
of insulin on some of insulin’s target tissues due to

http://rsif.royalsocietypublishing.org/


0
0.1
0.2
0.3
0.4

gl
uc

os
e 

in
pu

t

gl
uc

os
e

gl
uc

os
e

in
su

lin
gl

uc
os

e
0.5

(a) (d )

(e)

(b)

(c)

0.2
0.4
0.6
0.8
1.0

100 200 300 400 500

1.0
1.2
1.4
1.6
1.8
2.0

1.0

1.1

1.2

1.3

1.4

1.5

5 10 15 20 25

10
20
30
40
50
60
70
80

100 200 300 400 500

1.0

1.1

1.2

1.3

1.4

1.5

5 10 15 20 25

10
20
30
40
50
60
70
80

A
U

C
A

U
C

Figure 3. Dynamics of a two-component glycaemic feedback model. Model equations (in dimensionless units) are
_x Zð1C4 expfað1KyðtÞÞgÞK1KxðtÞ (insulin) and _yZfðtÞKð1C200 expfbð0:2KxðtÞÞgÞK1ð1C3=yðtÞÞK1 (glucose). Parameter
values are aZbZ5 and 3Z0:05. (a–c) Simulated time courses for a given scaled glucose input function fðtÞ ((a) glucose input
flux, (b) scaled plasma insulin concentration, (c) scaled plasma glucose concentration). (d ) Glucose plasma response curves to a
fixed glucose input pulse at various values of b-cell sensitivity (a); the slower return corresponds to diminished pancreatic glucose
sensitivity. The sensitivity coefficient for this system is ab. The AUC, which is a measure for the extent of the glucose excursion,
is shown as a function of ab in the inset. (e) Glucose plasma response curves to a fixed glucose input pulse at various values of
insulin sensitivity (b); the slower return corresponds to insulin insensitivity. AUC is shown as a function of ab in the inset.
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a reduced sensitivity to insulin. In the model, insulin
resistance is reflected by a reduction of the second term,
which will normally be dominated by vJG=vI

½p�.
Further details on the use of these ideas in the analysis
of glucose tolerance tests can be found in the papers by
Toffolo et al. (1980), Steil et al. (1993), Saad et al. (1994)
and Prigeon et al. (1996).
3.1.2. Functional specification of the flux terms. The
system, equations (3.1) and (3.2), leaves the flux terms
unspecified. Simple obvious choices include linear
models of the form

FðXÞZF0 CaXX ; ð3:4Þ
where F is some flux dependent on a factor X and F0

and aX are (possibly negative) parameters, and Hill-
type expressions:

FðXÞZFX

XmX

KmX

X CXmX
; ð3:5Þ

whereFX,KX andmX are positive parameters;KX is the
value of X such that FðXÞZFmax=2; and mX governs
how steeply the function rises about this midpoint.
Fluxes that depend on multiple factors (X,Y) are often
taken to be bilinear terms fXY. Inhibitory interactions
are often modelled in this way, with the risk that the flux
J. R. Soc. Interface (2008)
spuriously changes sign somewhere during the simulated
process. A more prudent choice for an inhibitory
interaction is multiplied Hill terms, e.g.

FðX ;Y ÞZFX

XmX

KmX

X CXmX
!

KmYX

YX

KmYX

YX CYmYX
; ð3:6Þ

where Y represents the concentration of a factor that
inhibits the flux, characterized by location and steep-
ness parameters KYX and mYX, respectively.

The justification for such specifications is limited.
It is hoped that they are qualitatively correct and it
is tacitly hoped or assumed that the details will
not affect the outcome appreciably. This may be
reasonable in view of the uncertainties that accrue on
a more mechanistic approach, which split the lumped
terms into numerous terms representing processes
in various different tissues. Even if each term could
be modelled accurately, reliable parameter estimation
may be difficult. This provides some rationale for
the cruder, simpler approach. Another difficulty is that
the molecular transport machinery is embedded in
cellular regulation. To indicate the problems encoun-
tered, we consider the example of insulin-dependent
glucose transport.

http://rsif.royalsocietypublishing.org/
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response to insulin.
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Insulin-dependent glucose transport A simple model
for insulin-dependent glucose uptake is the bilinear

model fI ½p�G½p�. If we take into account all relevant
sub-cellular processes, such as intracellular insulin
signalling, glycolytic pools of hexoses and trioses and
their regulation, we end up with a dynamical system
with greater than approximately 100 state variables.
For example, Sedaghat et al. (1992) formulated a
model with 20 state variables for the insulin/GLUT4
part of the system alone (GLUT means glucose
transporter, GLUT4 being the insulin-responsive
variant; see Silverman 1991). The purposes at hand
dictate which of these approaches is most suitable. For
instance, in the analysis of a glucose tolerance test,
it suffices to know that GLUT4 translocation to the
cell membrane in the presence of insulin happens
quasi-exponentially with a relaxation time of approxi-
mately 5 min; this reduces the 20 state variables in the
Sedaghat model to just one. On the other hand, when
one is interested in how a drug affects this relaxation
time, the 20-dimensional model is appropriate.

The influence of intracellular metabolites can be
appreciated by considering the following simple, but
mechanistically reasonable, expression for glucose
transport into a cell (see Keener & Sneyd (1998) for
a derivation):

j½GLUT�ZwnGLUT

Kd G½p�KG½i�� �
G½p�CKCKd

� �
G½i�CKCKd

� �
KK2

d

:

ð3:7Þ

Here w, K and Kd are positive parameters; nGLUT is the
number of GLUT molecules translocated to the cellular
membrane; and G[i] is the intracellular concentration of
glucose. Let fPðG½i�;wÞ denote the rate at which glucose
is converted into glucose-6-phosphate (the first meta-
bolic conversion that immediately follows uptake).
Here the vector w collects the intracellular factors
that affect this rate. Ifw is fixed, G[i] is found by solving
j½GLUT�ZfP ; this flux can then be computed from
nGLUT and G[p]. However, the situation is more
complicated since any changes in G[i] generally lead to
compensatory changes downstream in glycolysis and
ATP generation. This means thatwwill change as well,
and this must be taken into account to determine the
shape of the response curve, which describes j½GLUT4� as

a function of G[p]. A detailed analysis shows that the
asymptotic maximum of this curve is determined by
metabolic demand rather than nGLUT, and that the
midpoint of this curve is an increasing function of
the ratio between metabolic demand and nGLUT. If we
approximate the actual response curve by a Hill-type
function, we have that the ‘midpoint’ parameter KX is
(i) an increasing function of metabolic demand and
(ii) inversely proportional to nGLUT. In tissues that
express GLUT1, which is not insulin responsive,
nGLUT1 does not depend on I [p] and the midpoint
parameter can be expected to rise linearly with the
demand flux. By contrast, in tissues that express
GLUT4, nGLUT4 depends on I [p] and the dependence
of the midpoint parameter on demand becomes more
complicated, being insensitive at low demand and very
sensitive at high demand. These different responses
J. R. Soc. Interface (2008)
necessitate a decomposition of JG into several terms,
corresponding to the fluxes borne by tissues expressing
different glucose transporters.

An important consequence of the role of intracellular
regulation in this model is that it explains why the
effectiveness of insulin is reduced under hyperglycaemia
or hyperlipidaemia. According to the model, insulin
levels do not affect the maximum flux, but only act to
reduce the midpoint parameter. This allows the
effective regulation of insulin-dependent glucose uptake
as long as plasma glucose levels remain sufficiently low.
The critical level where effective control starts to fail is
lower when metabolic demand for glucose is lower, for
instance when b-oxidation of fatty acids provides a
substantial flux of AcCoA.
3.2. Glycaemic loop models with time delays
in cellular responses

Cellular responses are not instantaneous and thus
introduce delays into the system. Pancreatic b-cells
and liver cells introduce such delays in their responses
to glucose and insulin, respectively (figure 4). These
delays can introduce dynamical instability, i.e. oscil-
lations in the I ½p�;G½p� dynamics.

3.2.1. ‘Hard’ delay models. Pancreatic b-cells introduce
a time delay as the insulin secretion rate takes some
time to adapt to the plasma glucose levels. From a
modelling perspective, one option is to represent this
delay explicitly

FIðG½p�ðtÞÞ/FIðG½p�ðtK tI;dÞÞ; ð3:8Þ

where tI,d is the response delay incurred by the pan-
creatic b-cells as they respond to changes in the plasma
glucose levels. A hard delay tI,d in the pancreatic b-cell
response was investigated by Bennette & Gourley (2004)
and Li & Kuang (2007).

A generalization of the delay replacement (equation
(3.8)) is as follows:

FIðG½p�ðtÞÞ/FIð ~G
½p�ðtÞÞ; ð3:9Þ

where ~G
½p�ðtÞ is a new auxiliary variable, defined by

~G
½p�ðtÞZ

ð0
KN

G½p�ðtCsÞuðsÞds; ð3:10Þ

where u is a convolution kernel function. The hard
delay, equation (3.8), is retrieved by taking the kernel
u(s) to be the Dirac delta function dðtI;dCsÞ.

http://rsif.royalsocietypublishing.org/
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3.2.2. ‘Soft’ delay models.Many delay models proposed
in the literature use the gamma kernel

uðsÞZ ðKsÞnK1expfCns=tI;dg
ðtI;d=nÞnGðnÞ

: ð3:11Þ

The advantage of this kernel is that it can be implemen-
ted by extending the dynamics with a finite number of
state variables. Thus, n auxiliary state variables are
defined, with the following dynamics:

d

dt
x 1ðtÞZ

n

tI;d
G½p�ðtÞK x1ðtÞ

� �
; ð3:12Þ

d

dt
xiðtÞZ

n

tI;d
xiK1K xið Þ for i Z 2;.;n; ð3:13Þ

and xn(t) is used instead of I ½p�ðtK tG;dÞ. For n/N,
the gamma kernel approaches the hard Dirac kernel. The
effects of delays can often be effectively mimicked with a
relatively low n. At least for small n, the mathematical
analysis of such a soft delay approximation can be easier
to deal with than the corresponding hard delay formu-
lation, for instance in local stability analysis.

There is also a delayed response in hepatic glucose
production from glycogenolysis. Tolić et al. (2000)

considered a soft hepatic time delay (nZ3) tG,d for G
½p�

as input to FG

FGðI ½p�ðtÞ;G½p�ðtÞ; tÞ/FGðI ½p�ðtÞ;G½p�ðtK tG;dÞ; tÞ;
ð3:14Þ

whereas Engelborghs et al. (2001) investigated the hard
delay case. More complex models incorporate both the
pancreatic delay and the hepatic delay. These have
been studied by Li & Kuang (2001) and Li et al. (2006).
Explicit time delays constitute a fairly phenomeno-
logical approach to cellular response lags. Li et al.
(2006) pointed out that a physiologically realistic model
would have to describe the kinetics of intracellular
pools (e.g. the hexose phosphate pool and the triose
phosphate pool) as well as the activation/inactivation
kinetics of key enzymes such as glucokinase, glucose
6-phosphatase and phosphofructokinase. Inasmuch as a
physiologically realistic model would add a finite (and
preferably modest) number of additional state vari-
ables, it would introduce a soft rather than a hard
delay. One could thus argue that an nZ3 soft delay is a
more reasonable ersatz for a physiologically realistic
model than an explicit delay.
Other delay kernels De Gaetano & Arino (2000)
considered a two-ODE minimal model extended to a
DDE model with a generalized delay on b-cell insulin
secretion. For the glucose kinetics they assume the Roy
specification (equation (3.22)) with aZ0, whereas for
the insulin secretion rate they adopt the specification
(with positive parameter h)

FIð ~G
½p�ðtÞÞ/h ~G

½p�ðtÞ: ð3:15Þ
Finally, they assume the following uniform kernel:

uðsÞZ
1

tI;d
for KtI;d!s!0;

0 otherwise:

8><
>: ð3:16Þ
J. R. Soc. Interface (2008)
Based on these assumptions, De Gaetano & Arino
(2000) showed that the dynamics admits no more than
one equilibrium with both I[p] and G[p] positive.
Mukhopadhyay et al. (2004) showed that this result
obtains for this model in the more general case, where u
is a probability density function whose mean exists; the
Dirac kernel, the gamma kernel and the uniform kernel
all belong to this class. Li et al. (2006) studied the same
model, but replacing specification equations (3.22) and
(3.15) by more general functions.
3.3. Extended models for glucostasis

The simple two-state variable model is based on the
implicit assumption that other dynamic degrees of
freedom relax more quickly than those included in the
simple model. However, this assumption is not war-
ranted in general. Modellers have thus turned to models
with additional state variables, as illustrated in figure 5.
3.3.1. Endocrine dynamics. The model (equations (3.2)
and (3.1)) lumps exogenous and endogenous glucose
inputs into a single term FG. The endogenous processes
(glycogenolysis and gluconeogenesis) are controlled by
insulin and various other endocrine factors, the most
important of which is glucagon. Making this regulatory
loop implicit, the positive flux term is replaced by an
exogenous and an endogenous term,

FGðI ½p�;G½p�; tÞK$$%
replace in equation ð3:2Þ

F
½exo�
G ðtÞ

CF
½endo�
G ðI ½p�;A½p�Þ; ð3:17Þ

where A[p] is the glucagon concentration in the blood

plasma (the term F
½endo�
G still lumps together glycogen-

olysis and gluconeogenesis). The exogenous input is a
forcing function: it depends on t, reflecting the fact that
the time course of glucose supply is controlled by

external factors. The term F
½endo�
G can be calculated as

the rate at which glucose is absorbed from the diet or
supplied by infusion, divided by the volume of the
glucose distribution space (e.g. Roy & Parker 2006). To
close the system, an ODE for A[p] must be supplied, e.g.

d

dt
A½p� ZFAðI ½p�;G½p�ÞK lAA

½p�; ð3:18Þ

where lnf2g=lA is the physiological half-life of glucagon

and FAðI ½p�;G½p�Þ is the production function dependent

on G [p] and I [p]. The dependence on G [p] is included
because glucagon is secreted in response to low glucose
levels (Brook &Marshall 2001) whereas the dependence
on I [p] accommodates the inhibitory effect of insulin on
glucagon secretion (Greenstein &Wood 2006). A quasi-
steady-state approximation forA isFAðG ½p�Þ=lA, which
provides a justification for the dependence of FG onG[p]

in the two-state variable model described previously. If
the desired time resolution is no finer than 1=lA, the
original formulation can be retained.
3.3.2. Interstitial space: tissue compartments. The
physiological response to insulin may appear to lag
behind the response expected on the basis of the insulin
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Figure 5. Glycaemic feedback models with additional state variables. (a) Model extended with plasma glucagon and (b) the
standard minimal model, the two-component model, extended with an additional interstitial insulin compartment. Clouds
marked ‘EXO’ represent exogenous sources of glucose and those marked ‘ENDO’ represent endogenous sources.
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plasma level I [p]. Part of this lag can be explained
from the distribution kinetics of insulin. To account for
this, one may add one or more tissue compartments
to the model, also known as remote compartments
(Roy & Parker 2006). For each compartment, an

additional ODE must be supplied to describe I
½is�
[ the

interstitial fluid concentration of insulin in the [th
tissue compartment

d

dt
I
½is�
[ Z kI;[ I ½p�KI

½is�
[

� �
: ð3:19Þ

This equation models a passive exchange process with
transport parameter kI;[ (e.g. Sturis et al. 1991; Tolić
et al. 2000). To balance these exchange fluxes, equation
(3.1) must be modified, as follows:

d

dt
I ½p� ZFIðG½p�ÞK lII

½p�K
X
[

kI;[ I ½p�KI
½is�
[

� �
; ð3:20Þ

where the sum is taken over all additional tissue
compartments accounted for in the model. Glucose
kinetics (equation (3.2)) must also be adapted to reflect
the fact that the endogenous fluxes respond to
the interstitial insulin concentration rather than the
plasma level. Thus, equation (3.2) becomes
d

dt
G½p�ZF

½exo�
G ðtÞCF

½endo�
G;0 ðI ½is�0 ;GpÞK

X
[

JG;[ ðI
½is�
[ ;GpÞ:

ð3:21Þ
Here, [Z0 denotes the hepatic tissue compartment,
where endogenous glucose generation from glycogen-
olysis and gluconeogenesis is realized (muscle glyco-
genesis yields three-carbon intermediates that are
converted into glucose in the liver). The index [ is
included in the usage terms to reflect the possible
variation in insulin sensitivity among tissue compart-
ments. A model with three interstitial compartments
(following the central plasma compartment) for
glucose and two for insulin is analysed in detail in the
excellent paper by Silber et al. (2007). Their model
illustrates another use for interstitial insulin compart-
ments: viz. to simulate the slow-release effect from a
bolus injection (bolus injections are represented
mathematically as Dirac inputs; such an input at time
tZ0 can equivalently be implemented by a non-zero
initial condition).

When the transport coefficient is assumed to be
equal for all compartments (kI;[ hkc[ ), the interstitial
J. R. Soc. Interface (2008)
insulin concentrationswill likewise converge toa common
value. Discounting the initial transient, a single state
variable I ½is� then suffices. The resulting model,
figure 5b, is a three-ODE model known as the standard
minimal model, first proposed by Bergman et al. (1981).
Roy & Parker (2006) proposed simple functional
specifications for the glucose fluxes:

F
½endo�
G ðI ½is�Þ/F0KaI ½is�

and

JGðI ½is�;G½p�Þ/ bCgI ½is�
� �

G½p�;

9>>=
>>; ð3:22Þ

whereF0 is a baseline glucose release rate from the liver;
the coefficient a expresses the inhibitory effect of insulin
on gluconeogenesis (Gibney et al. 2003; Salway 2004);
b corresponds to insulin-independent glucose usage;
and g accounts for insulin-dependent glucose usage. In
a diabetic subject with I ½p� h0, the plasma glucose
concentration then relaxes towards the value F0=b,
which is the subject’s baseline glycaemia.

Of course, additional interstitial state variables
can be introduced for other soluble factors (e.g. the
model described in §4.1 accounts for interstitial fatty
acids). Simpler models omit such compartments. The
justification is analogous to the above argument for
glucagon dynamics: thus, for any substance X, if kX ;[ is
sufficiently large, the tissue compartment lag will not be
appreciable and X ½is� (where X is any substance) can
be replaced by X ½p�.

A generalized interstitial/plasma exchange model
favoured by some authors (e.g. Roy & Parker 2006) is
as follows:

d

dt
I
½is�
[ Z koutI;[ I ½is�KI

½is�
baseline;[

� �
C
KkinI;[ I ½p�KI

½p�
baseline;[

� �
C
;

ð3:23Þ

where ðxÞCZx if xO0 and ðxÞCZ0 if x%0. This model
has transport coefficients k in

I;[ and kout
I;[ , which may have

different values, for transport into and out of the
interstitial compartments. The baseline parameters are
positive constants that ensure that transport does not
take place when the concentration in the donor
compartment is below the baseline.
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Figure 6. The standard minimal model extended with the glucose–fatty acid cycle. NEFAs, non-esterified fatty acids; ins.-dep.
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4. INTEGRATED MODELS OF CARBOHYDRATE,
FAT AND PROTEIN METABOLISM

A key aspect of energy homeostasis is the coordinated
use of various metabolic fuels. The glycaemic feedback
loop is central to this coordination, since insulin also
serves as a regulator of the use of lipids and protein as
metabolic fuels (figure 1; for the sake of conciseness,
various endocrine factors that modulate insulin’s action
are omitted). The link with the usage of fatty acids as a
metabolic fuel is particularly important, and has been
the focus of attention in integratedmodels, while the link
with protein metabolism has received less attention.
4.1. Integrated lipid/glucose models

The glucose–fatty acid cycle is central to the interactions
between carbohydrate and lipid metabolism (Randle
et al. 1963). Through its effects on the metabolic control
of the glycolytic pathway, the oxidation of fatty
acids reduces the uptake and oxidation of glucose,
with the consequence that glucose usage is reduced
compared with that expected at given concentrations
of insulin and glucose in the plasma; this manifests
itself as insulin resistance (as discussed in §3.1.1 and
3.1.2). The glucose load following a meal will activate
insulin secretion, which stops the release of fatty
acids from the adipose stores and promotes the
disposition of plasma NEFAs towards these stores via
low-density lipoproteins, while glucose and insulin
drop to baseline levels between meals, promoting
lipolysis and the usage of NEFAs (Frayn et al. 1993;
Frayn 2003).
4.1.1. Fatty acid usage. The key characteristics of the
glucose cycle have been incorporated in the model
proposed by Roy & Parker (2006). This model is based
on the standard minimal model (see §3.3) modified to
have two interstitial compartments for insulin and an
additional interstitial compartment for NEFAs, which
communicates with a plasma NEFA compartment, a
new state variable F[p] (see the dynamics chart,
figure 6). One of the interstitial insulin state variables
drives glucose disposition (marked ‘ins.-dep’ in figure 6)
whereas the other drives disposition of NEFAs in
J. R. Soc. Interface (2008)
adipose storage (a sink/source in this model). There are
no endogenous sources of insulin, so insulin gains are
due to external inputs (there is an additional pro-
duction term that causes insulin degradation to change
sign at a ‘baseline value’). The model includes the
standard dietary gain terms for plasma glucose and
plasma NEFA. Fluxes that depend on a hormone
concentration and a substrate are modelled as bilinear
terms (e.g.fI ½is�G½p�).

Noteworthy elements in the model are two modula-
tory interactions. First, Roy & Parker (2006) have
included the inhibitory effect of plasmaNEFA on glucose
disposition, as a bilinear gain term fG½p�F ½p� (again
they include an additional gain term that causes a sign
change at baseline values). The model thus accommo-
dates a form of insulin resistance. In addition, plasma
glucose (G [p]) and plasma NEFA (F [p]) modulate
lipolysis (NEFA mobilization from adipose stores);

this term is of the formfF ½p�G½p� expfKG½p�=G0g (with
G0 a positive parameter) and represents modu-
latory interactions that are experimentally observed
(Knight & Iliffe 1973). Roy & Parker (2006) obtained
good model fits to experimental data, which include
(i) decay of plasma NEFA under euglycaemic hyper-
insulinaemic clamp, (ii) glucose disposition under
intralipid infusion and (iii) decay of I [p] and G [p] in
response to an intravenous glucose tolerance test.
4.1.2. The glucose cycle with internal store dynamics.
A model similar to the Roy & Parker (2006) model was
proposed by Maas & Smith (2006); a dynamics chart is
shown in figure 7. The model differs from the previous
model in that it explicitly represents internal reserves
(glycogen and triacylglyceride (TAG) stores) as state
variables. Both insulin and glucagon are represented as
state variables. There are no interstitial compartments.
The model contains an additional state variable that
evolves on a slow time scale. Slow dynamics will be
discussed below in §5.2.1.

Noteworthy features of this model are the inclusion
of the inhibitory effect of insulin on glucagon secretion

(modelled as a bilinear termfI ½p�G½p�), and the division
of energy usage into a component that is obligatory
glucose fuelled and a component that can use either

http://rsif.royalsocietypublishing.org/


TAG
reserves

NEFA

insulin

plasma

liver
glycogen

glucose

glucagon

adipocyte
count

Ø

Ø

Øa

Figure 7. Glycaemic feedback model extended with fatty
acid usage and a slow feedback loop based on adipocyte
proliferation. The quotient symbol indicates computation of
the ratio of the inputs.
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glucose or NEFAs. In the latter component, the ratio
of glucose usage over NEFA usage is assumed to be
proportional to the corresponding ratio of plasma
levels, G½p� : F ½p�. The model also includes glycogen
autoregulation, which is a physiological phenomenon
where the rate of glycogen accumulation diminishes as
the glycogen store size approaches a maximum capacity
(Laurent et al. 2000). Maas & Smith (2006) represented
this by making the corresponding term proportional to
the difference between the current glycogen store size
and the maximum value.
4.2. The need to integrate glucocentric models
with protein metabolism

Muscle protein represents a considerable energy store.
Under conditions of prolonged starvation or disuse
atrophy, this store is mobilized and the amino acids
derived frommuscle proteolysis either serve asmetabolic
fuel or are converted into glucose or fat (Karl et al.
1976; Salway 2004). Protein breakdown is connected
to the glycaemic feedback loop since insulin is involved
in the regulation of proteolysis (figure 1). Proteolysis
is inhibited by insulin and promoted by cortisol and
triiodothyronine (Karl et al. 1976; Fereday et al.
1998). Moreover, alanine is a substrate for gluconeo-
genesis. In view of these important links, it is perhaps
surprising that protein metabolism is virtually
ignored by the foregoing glucocentric models. However,
this can be justified. To explain this, we first need to
discuss the interface between carbohydrate and
protein metabolism.

Amino acids can serve as metabolic fuel: muscle
breaks down branched-chain amino acids, the liver
covers half its energy requirements from amino acids
and glutamine is an important metabolic fuel for
mucosal intestinal cells (Frayn 2003). However, the
use of protein for oxidation is a limited portion of
total energy requirements in a well-fed subject (Frayn
2003). Second, while alanine certainly serves to carry
nitrogen to the liver (which is cleared as urea), the
carbon in alanine may derive primarily from pyruvate
generated by glycolysis of muscle glycogen and
J. R. Soc. Interface (2008)
glucose taken up by the muscle (Garber et al. 1976a,b;
Karl et al. 1976). Alanine is thus just a tricarbon
shuttle in a pathway from muscle glycogen reserves to
plasma glucose via gluconeogenesis in the liver. The
justification of models of the type considered in §3
is that these effectively subsume the alanine pathway,
together with other gluconeogenic precursors, in the
overall flux of glucose derived from a ‘lumped’ source,
which accounts for hepatic as well as extra-hepatic
glycogen reserves.

Nevertheless, the representation of the glucogenic
precursor pathways would be appropriate in more
detailed models that explicitly represent muscle and
liver glycogen stores as separate state variables. Besides
the alanine cycle, such models would also account for
the Cori cycle in which muscle releases the gluconeo-
genic precursors lactate and pyruvate (Salway 2004). It
has become clearer in recent years that these stores
follow different dynamics and that extra-hepatic
glycogen serves an important role as a postprandial
buffer of the carbohydrate load ingested with the meal
(Taylor et al. 1993, 1996; Meyer et al. 2002). In fact,
Woerle et al. (2002) found that almost a third of
glycogen formation following a meal may be via the
indirect pathway, via a gluconeogenic precursor such as
alanine, pyruvate or lactate, some of which are
temporarily stored as extra-hepatic glycogen. Models
that treat liver and muscle glycogen stores as important
separate components are appropriate for the analysis of
these recent studies. Moreover, such models seem
certain to be relevant to disorders of energy homeo-
stasis, since the dynamic buffer function of muscle
glycogen is impaired in type 2 diabetes (Carey et al.
2002). Moreover, extra-hepatic glycogen stores play
a role in the response to a positive energy balance
(see §5.2.2).
4.3. Glucoplastic versus ketoplastic
carbon reserves

Glycogen reserves and muscle protein together consti-
tute reserves of moderately to highly oxidized carbon,
in contrast to lipid reserves, which store carbon almost
exclusively in a more reduced form. This distinction is
important not only from the point of view of energetic
density per unit weight (Frayn 2003), but also because
mammals cannot synthesize glucose (or any other
metabolite derived from the Krebs cycle intermediates
succinyl-coA through to oxaloacetate) from fatty
acids; while carbon atoms will readily pass through
b-oxidation and the Krebs cycle, there can be no net
gain since two carbon atoms are lost as CO2 for every
two atoms derived from fatty acids (Salway 2004). The
distinction between the two kinds of carbon is
physiologically important since the ketoplastic carbon
atoms of lipid reserves cannot be turned back into
glucoplastic carbon atoms, whereas the latter can
still be converted into ketoplastic carbon (the glycerol
carbons of lipid reserves remain glucoplastic, of course;
moreover, since one anabolic pathway branches off
between the CO2-evolving steps, there are amino acids
such as glutamine that must be reckoned as one-fifth
ketoplastic, and thus protein is in fact a mixed store of
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glucoplastic and ketoplastic carbon; similarly, citrate
and isocitrate are one-third ketoplastic). Consequently,
ketoplastic reserves are less versatile as anabolic
precursors (i.e. building blocks for growth): most of
the carbon in the lipid reserves will have to be used
as fuel—lipid reserves are ‘deferred catabolism’. On
the other hand, carbon stored as glycogen can to some
extent be ‘deferred growth’, built up in times of
shortage of high-quality nutrition (minerals, nitrogen).
Deferred growth is not only relevant to juveniles, but
also to adults: while adults no longer grow, the females
do supply building blocks to growing offspring. In sum,
the rate at the whole-body level of conversion of
glucoplastic to ketoplastic carbon represents a key
life-history trade-off; if this rate does not, over
prolonged periods of time, match the rate at which
carbon is oxidized to CO2, obesity ensues.
5. LONG-TERM DYNAMICS

The models considered thus far were concerned with
the physiological time scale at which the system
absorbs acute glucose challenges. This is the minutes-
to-hours time scale that is relevant for the response to
short-term starvation between meals and for nutrient
disposition following a meal. However, the processes
underlying the development of obesity and diabetes
(and their interplay in insulin resistance syndrome, or
metabolic syndrome) take place on a longer (days-
to-years) time scale. Here we discuss various modelling
approaches to this longer time scale.
5.1. Diabetic aetiology

Diabetes can develop as a primary dysfunction of
glucostasis or secondarily when the demands placed on
the glycaemic control system overstress its capabilities.
We discuss two modelling approaches to the long-term
compensatory mechanisms.
5.1.1. Regulation of the pancreatic b-cell mass. The
basic glycaemic feedback loop has what engineers call
finite gain: the loop does not effectuate the perfect
regulation of plasma glucose levels. From equation
(3.17) we have

�FGðI ½p�;G½p�Þh �F
½exo�
G CF

½endo�
G ðI ½p�;A½p�Þ;

where �F
½exo�
G is the fixed external glucose load. Thus,

the function �FG is different for different glucose loads,
and so is the glucose equilibrium point, via equation
(3.3). However, a slow-acting second feedback
mechanism operates, which ensures (at least under
physiological conditions) that the long-term average
plasma glucose is regulated to a value that does not
depend on the average load. The mode of action is
essentially what a control engineer would call integrat-
ing control (cf. Milhorn 1966). This slow mechanism is
based on the dynamics of the pancreatic b-cell mass

d

dt
Mb ZMb mbðG ½p�ÞK lb

� �
; ð5:1Þ

where Mb is the b-cell mass; mbð$Þ is the b-cell
proliferation function that relates the rate of b-cell
J. R. Soc. Interface (2008)
proliferation to the plasma glucose level (glucose is
known to potentiate the effect of IGF-1 that stimulates
b-cell proliferation; Hügl et al. 1998); and lb is the b-cell
death rate. The specific pancreatic b-cell growth rate mb

not only depends on plasma glucose, but has recently
been shown to depend critically on insulin as well
(Okada et al. 2007). Thus, a more realistic model would
make mb dependent also on I [p].

To connect b-cell mass dynamics to the glycaemic
loop model, the following replacement is made:

FIðG ½p�Þ
replace in equation ð3:1Þ�������������! MbfIðG ½p�Þ; ð5:2Þ

where FI is the insulin secretion rate per pancreatic
b-cell. The resulting three-state variable model is
depicted in figure 8. Like FI, the cell-specific function
FI is assumed to be monotone increasing. With the

assumptions as stated in §3.1, �G
½p�

becomes a monotone
decreasing function of Mb. This function can be
substituted into equation (5.1) to obtain a scalar
ODE for the slow time scale.

Let us assume, in the first instance, that m($) is
monotone increasing (i.e. glucose promotes b-cell
proliferation). It is then easy to see that, on the slow
time scale, ðd=dtÞlnMb is a monotone decreasing
function of Mb with a single zero corresponding to a

stable global attractor. Thus,G ½p� will tend to the long-
term equilibrium value mK1

b ðlbÞ regardless of the
glucose load (of course, variations in the glucose load
will determine the extent of variations of G[p] around
this value). This effect is typical of integrating control.
Catastrophic failure of the long-term loop. Topp et al.
(2000) speculated that glucose tends to inhibit b-cell
proliferation at high concentrations. Thus, mb becomes
a hump-shaped function, which first increases and then
decreases (without becoming negative). As a result,Mb

now has two equilibrium points, the lower of which is
unstable. Consequently, sustained hyperglycaemia can
induce net b-cell loss, which promotes further hyper-
glycaemia. The result is a catastrophic feed-forward
loop. Thus, as normal hyperglycaemia episodes become
more frequent or longer, b-cell mass dynamics may be
pushed past this catastrophic point: Topp et al. (2000)
analysed this transition in detail and discussed the
mechanism as a possible route to diabetes. This analysis
raises the possibility of b-cell mass involution leading to
non-autoimmune, fulminant type 1 diabetes mellitus;
interestingly, precisely such a syndrome has been
recently described by Imagawa et al. (2000).
5.1.2. Evaluating therapeutic regimes. De Winter et al.
(2006) took a different approach to the long-term
dynamics of diabetic aetiology. To describe the
deterioration of b-cell function and insulin sensitivity,
they introduced two functions, denoted by B(t) and
S(t), corresponding to the remaining population of fully
functional b-cells and insulin sensitivity, respectively.
The long-term dynamics of plasma glucose is described
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by the following IDE:

d

dt
hG ½p�iðtÞZ 4SðtÞSðtÞexpfmItgÐ t

KNð4BðtÞBðtÞhG ½p�iðtÞKG ½p�;-Þ expfmItgdt
KmGhG ½p�iðtÞ; ð5:3Þ

where angled brackets indicate long-term averages; mG
and mI are rate constants; G ½p�;- denotes the optimal
plasma glucose concentration; and 4BðtÞ and 4SðtÞ are
two forcing functions describing the effect of thera-
peutic intervention. To assess the success of the
therapeutic regime f4BðtÞ;4SðtÞg an output function
is required; for this De Winter et al. (2006) used

HðtÞfexpfKmHtg
ðt
KN

hG ½p�iðtÞexpfmHtgdt; ð5:4Þ

where H represents damage (glycosylated haemo-
globin) and mH is the haemoglobin turnover constant.
The usefulness of this approach hinges on the choice of
two empirical functions (B(t) and S(t)) that represent
the progressive loss of functionality; De Winter et al.
(2006) took these to be logistic sigmoid curves. A
conceptual difficulty with this approach is that the
therapeutic intervention may have an effect on the
disease progression, i.e. on the functions B(t) and S(t)
(since therapy affects hI ½p�i and hG ½p�i, which may
change the stress on b-cells and insulin sensitivity). In
De Winter et al.’s (2006) formulation, these functions
are autonomous. This dynamic feedback can be taken
into account by augmenting the system with ODEs
for B and S.
5.2. Adiposity dynamics in positive energy
balance

When energy intake exceeds energy expenditure for a
prolonged period (even by only a few per cent), the
accumulation of stored energy will occur. Excess
carbohydrate and amino acids are largely converted
into lipids (although net lipogenesis is likely to play a
major role only if the ingested diet is unusually rich in
carbohydrates; Aarsland et al. 1997; Frayn 2003).
Thus, a food intake that supports a positive energy
balance over the long term results in the laying down of
fat reserves. When the ability of adipocytes to absorb
this supply is taxed to capacity, elevated plasma fatty
acids levels may result. Since NEFA usage is regulated
in a simple donor-control fashion by the availability of
plasma NEFA (Izzekutz et al. 1967), glucose usage will
be reduced and sustained elevated levels of plasma
glucose and insulin will result. Moreover, sustained
J. R. Soc. Interface (2008)
insulinaemia that extends beyond the normal post-
prandial peak could contribute to insulin receptor
downregulation (Okabayashi et al. 1989), further
reducing insulin sensitivity. The key step in this
route to diabetes via dislipidaemia is the stress on
the assimilatory capacity of the adipocytes.
5.2.1. Adipocyte proliferation. Maas & Smith (2006)
modelled the rate at which plasma NEFA is absorbed
into adipose reserves as a bilinear term rAdipnAdipI

½p�F ½p�,

where nAdip is the number of adipocytes in the body.
Thus, the model simulates the elevated lipidaemia
and hyperinsulinaemia when the adipocyte count nAdip

is low in comparison with the energy excess in the
dietary intake. Adipocyte resistance to the action of
insulin is represented here by the quantity 1=rAdip; this
parameter may be under hormonal control, since
adipocytes secrete resistin that reduces the efficacy of
glucose transport into adipocytes (Faust et al. 1978;
Steppan et al. 2001) and may likewise affect insulin-
stimulated NEFA uptake.

Adipocyte proliferation, i.e. an increase of nAdip, can

compensate for the elevated I [p] and F [p]. Maas & Smith
(2006) modelled this by taking nAdip to be a state
variable with slow dynamics (‘adipocyte count’ in
figure 7). Maas & Smith (2006) modelled the rate of
proliferation phenomenologically, letting ðd=dtÞnAdip

depend on the mean adipocyte lipid content via a
very steep Hill function. If QTAG denotes the total
TAG content of adipocytes, the mean adipocyte lipid
content is equal to QTAG=nAdip (this is represented
by the quotient symbol in figure 7). This model is
physiologically plausible: individual adipocytes greater
than a certain size (and hence lipid content) are not
observed, suggesting that adipocytes that have reached
their maximum girth emit a signal that stimulates the
proliferation and/or differentiation of preadipocytes.
This is the critical fat cell size hypothesis (Hausman
et al. 2001). In addition to a peripheral paracrine
mechanism, central modulation via a neuroendocrine
axis may also play a role (Steppan et al. 2001). The
effect of the steep Hill function is to keep the ratio
QTAG=nAdip close to the upper size limit of adipocytes
as long as positive energy balance persists.

In mathematical terms, it can be shown that the
Maas & Smith (2006) model implies that TAG reserves
over the long term exhibit a sigmoid (not a first-order)
relaxation towards an asymptotic value that is

proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hI ½p�F ½p�i=hA½p�i

q
, where the quantities

in angle brackets h$i indicate long-term averages and
QTAG=nAdip is assumed to be kept constant (or very
nearly so) by the steep ‘adipostat’ function. When
glucagon levels are low, as they are likely to be under
conditions of positive energy balance and insulinaemia,
TAG reserves grow without bound as approximatelyffiffi
t

p
as long as hI ½p�F ½p�i is kept at a fixed value. However,

the increase in QTAG over the long term is already
mathematically determined. The slow dynamics of
QTAG is fixed by the average positive energy balance
in the long term, which is imposed as a forcing function
in this model. This mathematical determination is very
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interesting in physiological terms, since it means that
hI ½p�F ½p�i is effectively governed by the imposed energy
imbalance. To the biologist, this may seem counter-
intuitive since the effect seems to turn causality on its
head. This paradox is resolved by the interplay between
the fast and slow time scales.

The positive correlation between adiposity DQTAG

and hI ½p�F ½p�i is an interesting model property; since
DQTAG must in the long term reflect the imposed
dietary excess, the quantity hI ½p�F ½p�i must be greater
than normal during adiposity gains. In other words,
hyperinsulinaemia or hyperlipidaemia is a necessary
concomitant of adiposity gains in this model. Moreover,
they combine multiplicatively; hI ½p�F ½p�i is essentially
an overlap integral. In normal subjects, F [p] quickly falls
as soon as I [p] rises (Frayn et al. 1993). Thus, since the
overlap is normally quite small, it may be increased
appreciably by shifts in the timing of NEFA clearance
even when mean levels do not change by much.

The Maas & Smith (2006) model explains why
weight gains occur so readily after a diet. If adiposity
before the diet is Q pre

TAG and after the diet Q post
TAG, then

the rate of fatty acid disposition into storage will be
Q pre

TAG=Q
post
TAG times elevated, ceteris paribus, when

compared with normal subjects who have always been
at adiposityQ post

TAG, because the number of adipocytes in
the post-diet subjects is elevated by that factor, due
simply to the pre-diet adaptation of nAdip to Q pre

TAG via
the steep Hill function, combined with the model
assumption that adipocytes do not die. This elevated
lipogenesis predisposes to renewed adiposity gains,
especially if the subjects eat more to compensate for
this enhanced flux into storage. These predictions are
more likely to be relevant in middle-aged and older
subjects, as a result of a second term that Maas & Smith
(2006) included in the dynamics of Q, besides the steep
adipostat Hill function. This second term is pro-
portional to the body growth rate (which they impose
as a forcing function). As a result, the effects noted here
are masked in young adult life since the adolescent
increase in nAdip tends to keep the ratioQTAG=nAdip low.
5.2.2. Adaptive response to positive energy balance. In
the Maas & Smith (2006) model, the energy imbalance
is imposed from without, and the response is an
adaptive increase of nAdip, which allows the adipose
tissues to absorb the energy surplus. However, it is now
well established that signals emanating from adipocytes
(adipokines) play a central role (Kennedy 1953; Benoit
et al. 2004). A positive imbalance between intake and
expenditure can be redressed by reducing the intake,
increasing the expenditure or both. Food intake, basal
metabolic rate and thermogenesis are centrally coordi-
nated in the hypothalamus; figure 9 depicts major
signalling pathways. The main sensory input centre is
the arcuate nucleus (ARC), which contains neurons
that are sensitive to the plasma levels of insulin,
glucose, ghrelin and the adipokine leptin. These
neurons modulate food intake as well as the thyroid
hormone axis (Chen et al. 1993; Spanswick et al. 1997,
2000; Kim et al. 2000; Barsh & Schwartz 2002; Dobbins
et al. 2002; Nowak et al. 2002; van den Top et al. 2004).
J. R. Soc. Interface (2008)
The hypothalamus also regulates muscle glycogen
synthesis through the autonomous nervous system
(ANS; Perrin et al. 2004). As noted above, extra-
hepatic glycogen stores can serve as buffers that
temporarily absorb the energy excess (in particular,
its carbohydrate component) while preadipocyte
proliferation takes place. Leptin stimulation (via the
ANS) of glucose transport into extra-hepatic stores may
also be involved (Kamohara et al. 1997; Haque et al.
1999; Shiuchi et al. 2001). In hyperleptinaemic rats,
adipose TAG reserves all but disappear, in contrast to
pair-fed controls, while energy intake and body weight
were the same in these controls (Chen et al. 1993),
suggesting that energy expenditure must have been
nearly equal in the two groups (intracerebroventricular
infusion of leptin results in increased expenditure, but
the effect is much stronger after 3 days than after
14 days; Halaas et al. 1997). Energy reserves at the end
of the experiment must therefore have been comparable
despite the marked difference in adiposity, pointing to
the involvement of glycogen stores—particularly extra-
hepatic stores, given that liver weight did not change in
similar experiments on mice (Levin et al. 1996).

To account for these centrally coordinated compen-
satory changes in energy intake and expenditure, the
Maas & Smith model can be extended as shown in
figure 10. The plasma leptin level is included as a state
variable and treated as the main adiposity signal
driving the central response (Benoit et al. 2004). The
central nervous system (CNS) modulates food intake
and energy expenditure. The long-term behaviour of
this modified Maas & Smith model depends on the
mathematical specification of the secretion term in the
leptin kinetics, as well as on the specification of
the input/output behaviour of the CNS. It is worth-
while to discuss this question of formulating an
appropriate model in some depth, since it is connected
with several very topical issues in obesity research.
Leptin as an adiposity signal Leptin is secreted by
adipocytes. The leptin plasma concentration L½p� corre-
lates well with percentage body fat (Considine et al.
1996; Friedman & Halaas 1998), and is thus generally
regarded as an adiposity signal (Benoit et al. 2004). The

long-term average hL½p�i is proportional to the leptin
secretion rate, which is a product of nAdip and the
secretion rate per adipocyte. If the latter is a basal value,
independent of adipocyte size, we would have
hL½p�ifnAdip=V

½p�, where V ½p� is the plasma volume.
By contrast, we obtain hL½p�ifQTAG=V

½p� if the
leptin secretion rate is proportional to the size of
the adipocyte (which is QTAG=nAdip on average).
Again, if each adipocyte signals in proportion to the
assimilatory flux it is conducting, we would obtain
hL½p�ifððd=dtÞQTAGÞ=V ½p�. Which, if any, of these
options is the most realistic model?

Leptin gene expression is regulated by the hexosa-
mine pathway that converts fructose 6-phosphate
(Fruc6P) into UDP-N-acetylglucosamine (UDP-
GlcNac); this product donates GlcNac moieties to
transcription factors thus promoting the transcription
of leptin mRNA (Wang et al. 1998). The flux into the

http://rsif.royalsocietypublishing.org/


insulin

leptin

glucose

ghrelin

GHRH

T4T3

?

?
VMH

ARC

PVN

PFA/LHA
NPY

POMC ?

food intake

extra-hepatic glycogen

adipocyte proliferation

thermogenesisgrowth

ANS

ANS

TRHTSHThy

?

?

?

Figure 9. Schematic of the neuroendocrine control loop. ARC, arcuate nucleus; VMH, ventromedial hypothalamus; PFA/LHA,
perifornical area and lateral hypothalamus; PVN, periventricular nucleus; NPY, neuropeptide Y/agouti-related peptide
neurons; POMC, pro-opiomelanocortin neurons; GHRH, growth hormone-releasing hormone neurons; TRH, thyrotrophin-
releasing hormone neurons; TSH, thyrotrophs; Thy, thyroid gland; T3, triiodothyronine; T4, thyroxine; ANS, autonomous
nervous system neurons. Question marks indicate unknown interactions or components.

TAG
reserves

NEFA

liver
glycogen

glucose

glucagon

insulin

adipocyte
count

leptina

CNS
insulin, glucose,

NEFA, ...

Ø

Figure 10. Glycaemic feedback model extended with fatty
acid usage, adipocyte proliferation and central regulation
of energy assimilation and expenditure. The empty
cloud indicates endogenous sources. The cloud marked ‘a’
identifies adipocytes as the source of leptin. CNS, central
nervous system.

Review. Mathematical models of energy homeostasis R. Pattaranit and H. A. van den Berg 1131

 rsif.royalsocietypublishing.orgDownloaded from 
hexosamine pathway is increased when Fruc6P
accumulates due to NEFA availability (which slows
down glycolysis) and/or hyperglycaemia (which pro-
motes the influx of glucose). Larger adipocytes express
more leptin (Maffei et al. 1995). Leptin expression is
also regulated at the posttranslational level via the
mTOR-mediated pathway, which is activated by free
amino acids (Roh et al. 2003). The secretion of leptin
is regulated by intracellular ATP (Levy et al. 2000).
In keeping with these nutrient-sensing regulatory
mechanisms, plasma leptin levels decrease during
dynamic weight loss (Rosenbaum et al. 1997; Velkoska
et al. 2003), whereas leptin rises during hyperinsulinae-
mic clamp (Boden et al. 1997) and following food intake
(more markedly so in obese subjects). Plasma levels
slowly fall during sleep (Yildiz et al. 2004), yielding a
diurnal rhythm that has been shown to be entrained to
meal timing rather than an endogenous clock (Schoeller
et al. 1997). Collectively, these observations suggest, in
general, that leptin secretion by adipocytes reflects
assimilatory activity in these cells and, in particular,
that adipocytes operating near their maximum storage
capacity have high levels of leptin expression.
5.2.3. The Friedman adipostasis model. Friedman &
Halaas (1998) proposed a conceptual model in which
the CNS permits a positive energy balance to persist

while hL½p�i remains well below a critical value that they
call the leptin set point. As leptin levels start to
approach this threshold, the modulatory effects on food
intake and energy expenditure come into effect, so that
a neutral energy balance is attained at plasma leptin
levels in the vicinity of the set point.

The leptin set point in this model is equivalent
to an adiposity set point provided that we have
hL½p�ifQTAG=V

½p�. Thus, the model explains the
existence of an apparent ‘body weight set point’
particular to the individual and subject to genetic
variation in the population (Keesey & Hirvonen 1997).
Furthermore, the Friedman model predicts that
obesity can be caused by a reduced ability of
J. R. Soc. Interface (2008)
adipocytes to produce leptin, or an impairment of the
transport of leptin to the brain; in either case the
effect will be that the brain ‘perceives’ adipose reserves
to be smaller than they are. Alternatively, obesity can be
caused by a reduced sensitivity to leptin in the CNS. In
the first scenario, obesity with normal leptin levels
ensues, whereas leptin levels will be elevated in the
second scenario.

To represent the Friedman model mathematically,
we start with the following expression for the
energy balance:

hðxÞFassðuÞZFexpðx; vÞC
d

dt
QTAG; ð5:5Þ

where x represents an internal state of the hypo-
thalamus; Fass the assimilatory influx of energy; Fexp is
the expenditure of energy (expressed in the same units
as QTAG to keep the notation as simple as possible); the
multiplier h2 ½0; 1� represents the hypothalamic
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modulation of food intake; u represents environmental
factors such as food availability that codetermine the
assimilatory flux; and v represents physiological or
endocrinological variables that affect energy expendi-
ture, such as the body growth rate, pregnancy and
physical exercise.

Suppose now that the hypothalamus receives
inputs carrying information about (i) QTAG and/or
ðd=dtÞQTAG, which is reasonable in view of the foregoing
discussion, as well as (ii) v. Then, formally, u can be
recovered from these inputs; say

u ZY QTAG;
d

dt
QTAG; v;x

� �
;

whereY is at least locally uniquely defined by the balance
equation (5.5). This shows that the hypothalamus can
regulate QTAG towards an ‘adiposity set point’, which
can be, in general, any function of u and/or v. This is the
adipostasis property. Two caveats apply: first, this
regulatory ability is limited by obvious physiological
constraints, namely the maximum food intake rate and
the minimum expenditure rate. Second, it should not be
thought that the hypothalamus is supposed to solve
algebraic equations. Our formal representation is simply
intended to highlight the fact that the information inputs
mentioned suffice to obtain the adipostasis property.

The above argument is fairly abstract; let us
consider two simple examples. First, take x to be one-
dimensional with first-order relaxation towards the
leptin input

d

dt
x Z kX

QTAG

V ½p� K lXx; ð5:6Þ

where kX and lX are positive constants, and let the food
intake multiplier h be a steeply descending Hill-
type function of x (cf. Velkoska et al. 2003) with mid-
point parameter xO0. Then, as long as the quantity
Fexp=Fass fluctuates in the interval [0,1], adiposity

QTAG=V
½p� fluctuates around lXx=kX . The latter is the

apparent set point. This pattern is typical: apparent set
points arise as a compound of rate constants and
sensitivity (coupling) constants.

Although very simple, this minimal implementation
of the Friedman hypothesis already shows how one
can make sense of Keesey & Hirvonen’s (1997) remarks
about the body weight set point and variability of
this set point within the population. The model states
that individuals with a lower-than-average kX -value
have a higher apparent adiposity set point. The
coupling constant kX represents hypothalamic sensi-
tivity to leptin. Thus, if the hypothalamic leptin
receptor is knocked out, kX would be zero and the
model predicts that the individual becomes massively
obese (i.e. hQTAGi goes to its maximum hFexp=Fassi),
in keeping with the findings of Maffei et al. (1995).

In the simple model, the adiposity set point is
lXx=kX , a constant independent of ambient conditions
(u) such as food availability. Alternatively, one might
propose that the set point proportional to the time-
average caloric density of the available diet

d

dt

QTAG

V ½p� Z q
hFassðuÞi

V ½p� Kn
QTAG

V ½p� ; ð5:7Þ
J. R. Soc. Interface (2008)
where q and n are empirical constants. This is an
intuitively attractive and physiologically plausible
model, at least qualitatively. The caloric-density set
point model gives rise to first-order adipose density
dynamics in times of positive energy balance (see Sousa
et al. (2008) for a discussion of similar dynamics). The
model can be justified on the basis of the adipostasis
property. For example, the simple Friedman model can
be extended by assuming that the midpoint parameter
x is governed by the available inputs listed above. We
can recover the functional dependence by solving the
following equation for x:

hðx;xÞxZ qkX

nlX
$
FassðYðQTAG;

d
dt QTAG;v;xÞÞC d

dt QTAG

V ½p� :

ð5:8Þ
Again, there is no suggestion that the hypothalamus
explicitly carries out the algebra; the point is to show
how it can nonetheless affect the equivalent mapping by
showing how we can represent this mapping in terms of
our notation.
5.3. Negative energy balance and starvation

The Friedman model deals with the adaptation to
positive energy balance. There are also adaptations to
negative energy balance. This response consists of
coordinated regulation of energy expenditure, the
mobilization of energy stores and hyperphagia once
food becomes available. Both hypothalamus and
peripheral tissues partake in this response (Keesey &
Hirvonen 1997; Frayn 2003).

Energy expenditure is reduced as leptin levels
fall; peripherally, leptin affects insulin secretion (Lam
et al. 2004) and glucose usage (Haque et al. 1999;
Shiuchi et al. 2001) while centrally, there is a shutdown
of the leptin–TRH–TSH–thyroid axis (cf. figure 9;
Rosenbaum et al. 1997; Kim et al. 2000) as well as the
leptin–growth hormone axis (Tannenbaum et al. 1998).
The shift in the insulin/glucagon ratio stimulates the
Cori cycle (§4.2).

The key problem in the mobilization of energy stores
is the coordinated use of the three types of energy
reserve, viz. glycogen, fat and muscle protein. Hepatic
glycogen stores are rapidly depleted (Nilsson &Hultman
1973), leaving adipose stores and protein. Various
adaptations favour the use of the former: gluconeo-
genesis from lactate via the Cori cycle allows obligatory
glycolytic tissues to use energy derived from fatty acids,
which are also converted into ketone bodies used by the
CNS as an alternative to glucose, whereas the residual
obligatory usage of glucose is sustained by protein
breakdown via the alanine cycle (§4.2; Salway 2004).
The CRH–ACTH–cortisol axis regulates proteolysis in
muscle, counteracting the effects of insulin and IGF-1
(Brook & Marshall 2001); this axis governs the terminal
phase of starvation, when adipose stores have run out.

The long-term dynamics of QTAG is thus governed
by (minimized) obligatory energy requirements, and the
phenomenological approach that led to equation (5.7)
may therefore be inappropriate, although Kooijman
(2000) argued that this equation can be used to describe
starvation as well as energy surplus.
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6. CONCLUSION AND OUTLOOK

Since the purpose of this paper was to survey the
existing literature, we have followed the literature’s
glucocentric bias, starting with basic models of gluco-
stasis and the various ways in which these models are
extended with additional dynamic degrees of freedom.
However, the problems presented by diabetes, obesity
and controlled nutrition of, for example, cachexic
subjects call for models that integrate glucostasis
with adipostasis and myostasis at the long-term time
scale (the ‘developmental’ or ‘life-history’ time scale).
We have focused attention here on the interplay of
glucostat and adipostat. Other aspects that are import-
ant on the developmental time scale, but which have
not been emphasized in this review, include inter-
actions with lipoprotein metabolism and cholesterol
homeostasis and the interplay between amino acid
metabolism, glucoplastic carbon metabolism, myosta-
sis and the regulation of the overall growth rate.

An open question is how one can include all these
aspects in one overarching model, and, indeed, whether
one should. The 16-state variable model shown in
figure 1 is already prohibitive in terms of parameter
identifiability, and could easily be extended with many
more humoral factors and compartments. Perhaps the
approach taken in the analysis of the Friedman model
and the adipostasis property (§5.2.3) will prove to be
fruitful in general. Thus, to describe dynamics on the
life-history time scale, one startswith balance equations,
augmented with a minimum of additional physiological
state variables needed to describe the regulation of the
flux terms in response to, for example, dietary chal-
lenges. What is as yet missing is a systematic way of
deriving the dynamics of these additional state variables
at the slow time scale from the underlying detailed
dynamics at the fast physiological time scales.
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ment and the MOAC Doctoral Training Centre at Warwick
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